ARITHMÉTIQUE

Exercice 1 (*Division euclidienne*). Réaliser la division euclidienne de *a* par *b* avec :

1)
$$(a,b) = (750,14)$$

4)
$$(a,b) = (2^{2023},8)$$

2)
$$(a,b) = (15,34)$$

5)
$$(a,b) = (12345 \times 64 + 6789, 64)$$

3)
$$(a,b) = (-42,15)$$

6)
$$(a,b) = (1+2+\cdots+n, n)$$
 avec $n \in \mathbb{N}^*$

Calculer les PGCD des couples (a,b) suivants. Donner dans chaque cas un couple de coefficients de Bézout.

$$(a,b) = (69,13)$$

$$(a,b) = (45,76)$$

$$(a,b) = (350,14)$$

Exercice 2. Déterminer les entiers qui divisent à la fois 318 et 282.

Exercice 3. Montrer que la somme de 5 entiers consécutifs est divisible par 5.

Est-ce que la somme de 4 entiers consécutifs est divisible par 4?

Exercice 4 (*Équation diophantienne 1*). On considère l'équation $x^2 - y^2 = 5$. Trouver toutes les solutions (x, y) dans \mathbb{N}^2 . En déduire toutes les solutions (x, y) dans \mathbb{Z}^2 .

Exercice 5 (Équation diophantienne 2). Résoudre $3x^2 + xy = 11$ dans \mathbb{Z}^2 .

Exercice 6. Déterminer les entiers $x \in \mathbb{Z}$ tels que $(x-1) \mid (x+2)$.

Exercice 7. Soit $n \in \mathbb{N}$.

- 1) Démontrer que $(14n+3) \land (21n+4) = 1$.
- 2) Démontrer que $(n^3 + 2n) \wedge (n^4 + 3n^2 + 1) = 1$.

Exercice 8 (Calcul de PGCD et de PPCM). En utilisant la décomposition en produits de facteurs premiers, calculer :

- 1) $105 \wedge 147$ puis $105 \vee 147$.
- 2) 90 \lefty 120
- 3) $60 \wedge 144 \wedge 84$.
- 4) $2 \lor 3 \lor 4 \lor 5 \lor 6 \lor 7 \lor 8 \lor 9$.

Exercice 9 (Comptage de diviseurs).

- 1) Décomposer 360 et 1750 en produit de facteurs premiers.
- 2) Quel est le nombre de diviseurs positifs de 360 ? de 1750 ?
- 3) Quel est le nombre de diviseurs positifs communs à 360 et 1750 ?

Exercice 10. Soit $a, b \in \mathbb{Z}$. Montrer que $a \wedge b = 1 \iff (a+b) \wedge (ab) = 1$.

Exercice 11 (*Valuations*). Soit $a, b \in \mathbb{Z}$ et $n \in \mathbb{N}^*$. Démontrer que $a^n \wedge b^n = (a \wedge b)^n$.

Exercice 12. Montrer que $\sqrt{2}$ est irrationnel. *Indication : raisonner par l'absurde*.

Exercice 13 (*). Soit $p \ge 5$ un nombre premier. Montrer que $p^2 \equiv 1$ [24].

Exercice 14 (*Critère de divisibilité*). Soit $a \in \mathbb{N}$ un entier à N chiffres. On note $a_N a_{N-1} \dots a_1$ son écriture en base 10.

- 1) Montrer que $2 \mid a$ si et seulement si $2 \mid a_1$.
- 2) Montrer que 3 | a si et seulement si 3 | $\sum_{k=1}^{N} a_k$.
- 3) Montrer que 5 | a si et seulement si 5 | a_1 .
- 4) Montrer que $6 \mid a$ si et seulement si $2 \mid a$ et $3 \mid a$.
- 5) Montrer que 9 | a si et seulement si 9 | $\sum_{k=1}^{N} a_k$.

Exercice 15 (*Congruences*). Déterminer le dernier chiffre de 7⁷.

Exercice 16. Déterminer le reste de la division euclidienne de : **A)** 5^{12} par 11 **B)** 3^{2023} par 7.

Exercice 17. Soit $n \in \mathbb{N}$. Montrer que le reste de la division euclidienne de $6^n - 1$ par 7 appartient à $\{0, 5\}$.

Exercice 18. Démontrer que pour tout $n \in \mathbb{N}$, on a $6 \mid (5n^3 + n)$.

Exercice 19 (Équations de congruences). Résoudre dans $\mathbb Z$:

- 1) $5x \equiv 3$ [17]
- 2) $10x \equiv 6$ [34]
- 3) $10x \equiv 5$ [34]

Exercice 20 (*Exercice banque CCP*). On cherche à résoudre le système suivant, d'inconnue $x \in \mathbb{Z}$:

$$(S): \begin{cases} x \equiv 6 & [17] \\ x \equiv 4 & [15] \end{cases}$$

- 1) Déterminer une solution particulière $x_0 \in \mathbb{Z}$. On pourra faire le lien avec une relation de Bézout.
- 2) Déduire les solutions de (S).

Exercice 21 (Équations diophantiennes du premier degré). Résoudre dans \mathbb{Z}^2 les équations suivantes :

$$(E): 7x + 12y = 5$$

$$(F): 9x + 15y = 11$$

(*G*):
$$9x + 15y = 18$$